Two Alternative Conformations of a Voltage-Gated Sodium Channel
نویسندگان
چکیده
منابع مشابه
A prokaryotic voltage-gated sodium channel.
The pore-forming subunits of canonical voltage-gated sodium and calcium channels are encoded by four repeated domains of six-transmembrane (6TM) segments. We expressed and characterized a bacterial ion channel (NaChBac) from Bacillus halodurans that is encoded by one 6TM segment. The sequence, especially in the pore region, is similar to that of voltage-gated calcium channels. The expressed cha...
متن کاملIsoflurane inhibits NaChBac, a prokaryotic voltage-gated sodium channel.
Volatile anesthetics inhibit mammalian voltage-gated Na(+) channels, an action that contributes to their presynaptic inhibition of neurotransmitter release. We measured the effects of isoflurane, a prototypical halogenated ether volatile anesthetic, on the prokaryotic voltage-gated Na(+) channel from Bacillus halodurans (NaChBac). Using whole-cell patch-clamp recording, human embryonic kidney 2...
متن کاملAnnotation of functional impact of voltage‐gated sodium channel mutations
Voltage-gated sodium channels are pore-forming transmembrane proteins that selectively allow sodium ions to flow across the plasma membrane according to the electro-chemical gradient thus mediating the rising phase of action potentials in excitable cells and playing key roles in physiological processes such as neurotransmission, skeletal muscle contraction, heart rhythm, and pain sensation. Gen...
متن کاملAlternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation, and persistent current.
Diversity in neuronal signaling is a product not only of differential gene expression, but also of alternative splicing. However, although recognized, the precise contribution of alternative splicing in ion channel transcripts to channel kinetics remains poorly understood. Invertebrates, with their smaller genomes, offer attractive models to examine the contribution of splicing to neuronal func...
متن کاملDeterminants of voltage-gated sodium channel clustering in neurons.
In mammalian neurons, the generation and propagation of the action potential result from the presence of dense clusters of voltage-gated sodium channels (Nav) at the axonal initial segment (AIS) and nodes of Ranvier. In these two structures, the assembly of specific supra-molecular complexes composed of numerous partners, such as cytoskeletal scaffold proteins and signaling proteins ensures the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Molecular Biology
سال: 2013
ISSN: 0022-2836
DOI: 10.1016/j.jmb.2013.06.036